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Abstract. The field equations for a stationary cylindrically symmetric electrovac space- 
time, having a space-like hypersurface-orthogonal Killing field, are rederived using the 
Kinnersley-Chitre formalism, using the additional assumption that the only surviving 
components of the electromagnetic potential are A,(r) and A,(r). New families of solutions 
are presented for a non-null electromagnetic field. One particular family can be completely 
described in terms of Painleve transcendents. The resulting space-times are not static. 
All possible locally static cylindrically symmetric Einstein-Maxwell solutions of the 
considered type are listed. 

1. Introduction 

Current research in stationary axially symmetric Einstein-Maxwell solutions is mainly 
directed to generation techniques for asymptotically flat space-times. This partially 
explains the lack of exact solutions when space-time is also endowed with cylindrical 
symmetry. Although one deals in the latter case with a system of ordinary rather 
than partial differential equations, the only stationary example in the survey of Kramer 
et a1 (1980) is the Wilson solution (1968), which was shown by McCrea (1982) not 
to be an electrovac solution at all. The stationary cylindrical solutions of Arbex and 
Som (1973) are in fact known to be static, and the only stationary solutions which 
are not locally static are the McCrea solutions (1982), describing gravity coupled with 
a null electromagnetic field. 

It is the purpose of this paper to present new solutions for a non-null electromag- 
netic field. In 9: 2 the field equations are derived in the Kinnersley-Chitre formalism 
(1977), as this is best suited to obtain directly first integrals for some of the equations. 
This yields a set of two coupled nonlinear second-order ordinary differential equations, 
of which new families of solutions are given in 9: 3. In 9: 4 we derive general criteria 
for a stationary cylindrically symmetric electrovac space-time of the considered type 
to possess a time-like hypersurface-orthogonal Killing field. It follows that the new 
solutions are not locally static. 

2. Field equations 

We write the metric of the stationary cylindrically symmetric space-time having a 
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space-like hypersurface-orthogonal Killing field in the Weyl-Lewis-Papapetrou form 

dsz = f (dt - w  dq5)' - f-'[e2"(drz + dz2) + r2  dq5'] (2.1) 

Denoting the coordinates t ,  4, r ,  z by xl, xz ,  x 3  and x 4  respectively, we define 

We also assume that the only non-vanishing components of the electromagnetic 

According to the work of Kinnersley and Chitre (1977), the Einstein-Maxwell 

with f, w and y functions of r only. 

f l l  = f,. f12 = -fw = f i l  and fz2 = -r2f-'+wZf. 

potential are A I  = P(r )  and A Z  = Q ( r ) .  

equations 

fall into two classes, the first one of which gives y by integration from f, w and P, 
and the second reduces to the Ernst equations 

(2.4) 

(2.5) 
G and @ are complex functions of r and z ,  with G = Gll,  @ = all and (C, D, . . . = 1,2) 

fV@ = (VG + 2@*V@) * V@, 
fVZG = (VG + 2@*V@) .VG. 

BC and ~ C D  are potentials defined by 

(2.8) 

(2.9) 
(V, 9 being the operators (a3, a,) and (a4, 4 3 )  respectively, and indices being raised 
with the alternating symbol sCD = ECD = (-1 0)). 

Imposing now the conditions for cylindrical symmetry Ac = Ac ( r )  and fcD = fCD ( r ) ,  
one deduces from (2.8) and (2.9) 

-1 D' VBc = -r fc VAD, 
V ~ C D  = - r  -1 ( f c E 9 f E D - 2 f c E A ~ 9 A E - 2 f D E A C 9 A ~ )  

0 1  

Bc = bcz + CC, 
*CD = YCDZ + UCD, 

(2.10) 

(2.11) 

with bc, cc, YCD and UCD constants. By suitable gauge transformations one can take 
cc = uCD = 0. Substitution in the inverse relations of (2.8) and (2.9) shows that bc and 
YCD are real, with 

(2.12) A' - c-r f c D h  

f&D = r-'fcE(yED + ~ A E ~ D  + ~ A D ~ E )  (2.13) 

(a prime denoting differentiation with respect to r) .  From (2.8) and (2.9) one also 
obtains 

PB1 = -r-'f(VAz+wVA1) 
and 

= -rffZ(Vql1 +4A1VB1). 

(2.14) 

(2.15) 
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Hence, (2.10)-(2.13) yield 

Q' = -qf ' -up' (2.16) 

and 

w )  = f 2 ( C  +4qP) (2.17) 

where we have put q = bl and c = y l l .  

now become 
With CP = P + iqz and G = f + CP2 - 2P2 + icz the Ernst equations (2.4) and (2.5) 

( r f - '~ ' ) '  = -qrf-2(c + 4 q ~ )  (2.18) 

and 

(rf-lf) '= Tf-2[2f(P'2+q2) - (c  +4qP)2]. (2.19) 

Once f and P have been calculated from this system, Q and w follow from (2.16) 
and (2.17), and finally the metric coefficient y results from the integration of 

= &-2f2 -1 f 2" 12 + Z t f - 1 -  r f - lp12  (2.20) 

rf-'P'=p -qw (2.21) 

(cf Kramer er al 1980). Note also that one obtains from (2.17) and (2.18) 

with p a constant. 

3. Solutions 

3.1. q = c = O  

From (2.16) and (2.17) one sees that the resulting solutions are static (w = constant) 
and have magnetic and electrostatic potentials proportional to each other (up to a 
trivial integration constant): 

Q = -UP. (3.1) 

In this sense they can be looked at as superpositions of the Witten solutions (1962). 
For P a constant they reduce to the vacuum solutions (cf Kramer et a1 1980). When 
P' # 0, the solutions can be obtained explicitly by rewriting (2.19) and (2.21) as 

d2f/dP2 = 2, (3.2) 
d In r/dP =p-lf-'. (3.3) 

The general solution has three arbitrary constants, and contains as an important 
subclass the solutions (U, w constants) 

f = u 2  sec2(pv In wr),  

f = u 2  cosech2(pu In wr), 

P = U tan(pu In wr),  (3.4) 

(3.5) 

and 

P = -U coth(pu In wr) 

for which the Ernst potential G is a constant (such that (2.5) is trivially satisfied). 
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3.2. 4 = 0, c f O  

Non-trivial electrovac solutions with Q and P proportional to each other, or with a 
null electromagnetic field, do not exist. Rewriting (2.19) and (2.21) as differential 
equations in P yields 

d2f/dP2 = 2 - ~ ~ p - ~ r ' f - ~ ,  (3.6) 

d In r/dP =p-'f-l. (3.7) 

w = -dQ/dP (3.8) 

Q =pc-'(f -P2). (3.9) 

One obtains then from (2.16) and (2.17) 

and 

A particular class of solutions results by taking f proportional to P. One has then 

P = Zpf, w =c-'(3p2f -$). (3.10) 2 -2 - l /3  2/3 f = ( 2 p c  ) r , 
The metric coefficient y follows from (2.20): 

(3.11) 

Starting with this particular solution f l  = (2pZc-2)-1/3r2/3, we can construct all other 
4 = 0 solutions: (2.21) yields 

y=;lnr-&'(2p 2 c -2 ) -1/3 r 2/3 . 

P'=pr-'f 

(rf/f)' = 2p2r-'f -c2rf? 

f =f1.u 

x = (z) r (2p21c1)1'2. 

with f given by (2.19), or 

Define 

and 
3 3/2 1/2 

Then (3.13) yields 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

The substitution U = x-'l3y-' then finally gives y as the third PainlevC-transcendent: 

d2y/dX2 = y - l ( d ~ ~ / d r ) ~ - x - ' d y / d r  +Y(y3-x-l). (3.16) 

It follows that (3.10) is the unique solution for 4 = 0 and c f 0, which is solvable in 
terms of classical transcendental and elementary functions. 

We shall show in 3: 4 that all the 4 = 0 solutions are stationary and non-static. 

(d/dx)(xu-' du/dx) = (9) 4 2 x 1/3 (U - L2). 

3.3. 4 # 0 

(i) Non-trivial solutions for which (Q - kP)' = 0 exist. Elimination of P' from 
(2.16) and (2.21) yields 

= & p  - k4)4-'* [r2f-2 +$4'-2(p + kq)2]1/2. (3.17) 
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In general, an arbitrary relation w = w ( r ,  f )  will be incompatible with (2.18)-(2,19), 
However, for (3.17) the integrability conditions resulting from (2.17), (2.21) are 
precisely equivalent with (2.19). Hence, each solution of (2.19), i.e. 

( r f - ' f ' ) ' =  2 r f - 'q2+2r - ' f (p  - q o ) 2 - r - ' f 2 w ' 2  (3.18) 

with w given by (3.17), yields a solution of the system (2.17)-(2.19). 
When p + kq = 0, one has w = -k f rf-' and hence 

P = Tqr, 

Integration of (3.18) yields further 

Q = *pr. (3.19) 

f = 4q2r2  + ur In wr ( U ,  w constants) (3.20) 

in which one recognises the null solutions given by McCrea (1982). The electromag- 
netic field in the orthonormal basis of one-forms is then 

F = 24 e-y(w2 A 0 3 f w 1  A w ' )  

with 
(3.21) 

(3.22) 

When p + kq # 0, a particular one-parameter family of solutions for (3.18) has been 
given by Arbex and Som (1973). The solutions are of electrostatic or magnetostatic 
type respectively, 

f = cosh' u[(r"  +mr-U)-2-(tanh2 u)r2(r"  +mr-")']  

and (3.23) 
f = cosh2 u[(r '+w -nr'-" ) - (fanh' u)r2(r '+w - nr' -w)-2]  

( U ,  w are constants of integration; m and n determined by p ,  4 and k ). They describe 
a static field viewed by a rotating observer. In Fi 4 we will show that all other solutions, 
resulting from (3.17) with p + k 4  # 0, are locally static too. The hypersurface 
orthogonal time-like Killing fields are -ka/a t  + 8/84 or ( 2 p  + kq)a/at + q a / a 4  accord- 
ing to the choice of the upper or lower sign in (3.17) when ( p + q k ) q > O  (and the 
opposite when ( p  + q k ) q  CO) .  

+ w ( U ;  w and m constants) 
leads unambiguously to m = 0 or m = 5. For m = 0 one reobtains the McCrea null 
solutions, while m = yields 

p = U r 4 / 3 - t C q - 1  (3.24) 

f =r4 r ~ ( ~ 4 1  U r . 

(ii) Substitution in (2.18)-(2.19) of the ansatz P = 

and 

(3.25) 9 2 2 - 1  3 4 -2 413 

Hence, (2.20) and (2.21) yield 

(3.26) w = q - ' ( p - Q u r  4/3 f -1 ) 

y=ln[r  ( 9 v  4 r 

and 

(3.27) 419 fi 2 - 2  2 / 3 -  

Below, we will show that these solutions are non-static too. 
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4. Criteria for the considered stationary cylindrically symmetric electrovac 
space-time to be static 

It is well known that, with a suitable choice of coordinates, the metric of a static 
axisymmetric electrovac space-time can be written-at least locally-in the form (2.1) 
with w = 0. Whether such a coordinate system exists which covers the whole space- 
time, such that the solution is global ly  static, will not be our point of study. For an 
introduction to this subject, one is referred to Stachel (1982). 

Obviously, when w is constant, solutions are also locally static: it suffices to look 
at the coordinate transformation t'  = t - wr#~  In general, for non-constant w ,  it is hard 
to find out whether such a transformation exists. For space-times endowed with 
cylindrical symmetry too, it was claimed by Som et a1 (1976) that any stationary 
vacuum field solution is necessarily static. This claim however turned out to be false 
(Bonnor 1980). 

Neither for an electrovac space-time is this the case, as has been proved by McCrea 
for the null solutions (3.19)-(3.20). 

We will develop now general criteria for stationary cylindrically symmetric elec- 
trovac space-times of the considered type to possess a time-like hypersurface- 
orthogonal Killing field X .  Obviously one does not know a priori whether the three 
Killing fields a/ax', a/axz and a/ax4 span the Lie algebra of the complete isometry 
group (this is e.g. not true for the flat solution f = 1, y = w = 0). Therefore we first 
solve the Killing equations 

X(a:b) = 0 (4.1) 

to find out whether there are other solutions besides the obvious ones Xi = constant, 
X 3  = 0 ( i  = 1, 2, 4). Defining g =f-"* e', one obtains from (4.1) 

x3,3 = x4,4 = g - ' g ' x 3 ,  

x3,4 +x4,3 = 0, (4.3) 

x',' = i r - 2 f 2 2 f l ~ 3 ,  (4.4) 

x ' , ~  = i r - ' f f ; 2 x 3 ,  (4.5) 

f x 1 , 2 + f 2 2 x 2 , 1  - r - 2 ( r f 1 2 + f 2 2 f ~ 2 ) ~ 3  = 0, (4.6) 
x ~ , ~  +ox3,' - r 2  e - ' ' ~ ~ , ~  = 0, 

f22x3,1 - f l z ~ ~ , ~ - - ~ g - ~ ~ ~ , ~  = 0, (4.9) 

(4.2) 

(4.7) 

(4.8) x ~ , ~  i - o ~ ~ , ~  - r 2  e - ' ' ~ ~ , ~  = 0, 

f 2 2 x 4 , 1  - f 1 2 ~ 4 , 2  - r 2 g - 2 ~ 1 . 4  = 0. 

We limit ourselves now to the cases for which: 

(4.10) 

(i) w # constant (then space-time would be static); 
(ii) f # constant (all solutions are then necessarily flat); 
(iii) w # Krf-', K constant (one obtains then the null solutions (K = *l) which 

are non-static (McCrea 1982)); 
(iv) w 2  ZK +r*f-' ,  K constant, or, equivalently (f-'fI2)' # 0 (these solutions 

will be shown below to be static with hypersurface-orthogonal Killing field 
noa/ax' +nla/ax2).  
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From (4.2) one has now 

X 3 = ( I / ( x 1 , x 2 , x 4 ) * g .  (4.11) 

(a) When (I/ = 0, (4.2)-(4.5) and (4.7)-(4.9) yield X4 =X4(x1, x 2 ) ,  X' = X 1 ( x 2 ,  x4) 
and X 2  = X 2 ( x 1 ,  x4). Taking x ', x 2  partial derivatives of the remaining equations and 
making use of the conditions (i)-(iv) shows that X ' ,  X 2  and X 4  are linear in their 
arguments with X4,z=0. Substituting back in the equations yields X ' ,  X 2  and 
x4 =constant. 

(b) When (I/ # 0, (4.2)-(4.3) and (4.1 1) yield (r = x 3 ,  z = x4)  

X 3  = (a l  eiKr + a 2  e-iKr)(bl eKz  + bZ e-Kz), 

X 4 = ( a l  eiKr-a2e-iKr)(bl  eKz -b2e-KL),  
(4.12) 

or 

(4.13) 

with a l ,  a2 and K constants ( K  real or imaginary), and bi = b i ( x ' ,  x 2 ) .  Substituting 
back in the remaining equations shows that ai # 0 and bi # 0 are incompatible with 
conditions (i)-(iv). 

For our search for hypersurface-orthogonal time-like Killing fields, this means that 
we only have to consider fields of the form 

x = noa/at +n la / a4  +n2a/az.  (4.14) 

A Killing field X is hypersurface orthogonal if the associated one-form 

V = - /X'X, I - ' g , a a  dx (4.15) 

is closed. Hence, we must look for cylindrically symmetric stationary electrovac 
space-times, for which 

and 
p 2 > 0  

with 

We can restrict ourselves to the case no-wnl # 0 (no--wnl = 0 would imply w = 
constant or no = nl = 0 and hence p 2  L 0). Now (4.16) yields 

Hence, constants A ,  p and Y (A # 0) exist such that 

g p 2  = n1r2f-l +w(no-wnl)f, (4.20) 
(4.21) 2 27  -1  up = n z e  f . 
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(a) u = n z = O  
Equations (4.17) and (4.19)-(4.20) can be seen to be incompatible, except for nl  f 0 
and p = (no-A)(Anl)- ' .  One has then 

W = no/nl - K  f (r2f-z+Kz)1/2 (4.22) 

with K = A / 2 n l .  Eliminating P and P' with (4.22) from (2.17) and (2.21), a differential 
equation for f results which is identical with (2.19) for 

p =qnon;' or p =q(no-A)n ; ' .  (4.23) 

Hence q # 0 (if not, p = 0, and one would have vacuum solutions). 

choice of signs is made in (4.22): 
One can check that the Killing field is time-like ( P L > O )  when the following 

6J = no/n 1 - K - K (1 + K -21zf -')ll2. (4.24) 

For any value of K(#O), two independent Killing fields exist (cf (4.23)). 
It also follows that all these static solutions belong to the class studied in B 3.3 (i): 

(Q -kP)' = 0 with k given by k = f 2 ~  -p /q ,  according to the choice (4.23) of the 
Killing field. 

(b) u # O  
(4.17) and (4.19H4.21) yield n # 0 and no # Ap. One obtains then explicit expressions 
for w ( r )  and f ( r ) :  

f = cy +pr2,  0 =([+c$r2)f-', 

with cy, p, 5 and constants determined by A ,  p,  no, nl  and n2.  Substitution of 
these in (2.18)-(2.19) shows that the only solution of this type is the flat solution 
p = 5 = 5 = 0 .  

5. Conclusion 

Some new families of exact solutions for a cylindrically symmetric stationary space- 
time with a non-null electromagnetic field have been presented: (3.4), (3.10)-(3.11), 
(3.16) and (3.24)-(3.27). The former is static and has constant Ernst potential, the 
others are not locally static. Furthermore, it has been shown that the considered 
cylindrically symmetric stationary electrovac space-times, with non-vanishing elec- 
tromagnetic field, are locally static if and only if w is a constant or the solution is of 
the type (4.24) with (Q -kP)' = 0. 
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